La maintenance prédictive: le Graal de l’industrie 4.0

mardi, 04.12.2018

Xavier Comtesse, Samuel Vuadens

Dans l’évolution industrielle actuelle, un des champs de développement majeur de l’intelligence artificielle (IA) est celui de la maintenance. Cette dernière représente un coût important pour les entreprises. Que ce soient les avions, les trains, les voitures ou les machines-outils quand ceux-ci tombent en panne – de manière inopportune – les coûts d’exploitation explosent. C’est un problème connu des entreprises qui ont essayé de le traiter depuis longtemps. Mais avec l’IA, les choses sont en train de changer. On parle désormais de maintenance prédictive.

Selon une étude récente de McKinsey, la maintenance prédictive couplée à l’internet des objets permettrait aux entreprises d’économiser 630 milliards de dollars d’ici 2025. Ces économies seront rendues possibles par essentiellement trois facteurs. Premièrement, une réduction réelle des coûts de la maintenance de 10 à 20%. Deuxièmement, une diminution du nombre de pannes par moitié ce qui n’engendrerait pas de coûts d’achat de matériel de remplacement. Et enfin, en augmentant la durée de vies des machines installées.

 Avant on attendait la panne et la maintenance était de type correctif. C’était l’approche la plus basique en maintenance. Il s’agit très grossièrement de réparer – voir remplacer – une pièce une fois la panne constatée. La maintenance corrective est légitime, et recommandée dans certains cas:

  • les pièces de remplacement sont à bas coût 
  • les pièces peuvent être changées rapidement 
  • l’impact d’une panne de la machine est faible pour l’utilisateur final 

De l’autre côté, la maintenance préventive est proactive. Il s’agit d’anticiper les défauts et les pannes d’une machine. La maintenance préventive se manifeste sous la forme d’un calendrier d’intervention calculé. Le fournisseur planifie des venues fréquentes sur site pour s’assurer que les machines livrées ne sont pas abîmées. Le problème réside dans le coût des venues du fournisseur pour les machines sur lesquelles il n’y a pas de problème. Il y a donc un gaspillage. Aujourd’hui avec les outils issus du Big Data et de l’Intelligence artificielle – ici essentiellement le «machine learning» – on est capable d’amener beaucoup de précision dans ce type d’intervention et donc d’en diminuer drastiquement les coûts.

Des secteurs manufacturiers aussi divers que l’automobile, l’électronique, l’aéronautique, la pharma et la machine-outil ont tous intérêt à passer à l’analyse prédictive. Par exemple, l’usine allemande du Groupe BMW de Landshut a choisi la solution d’analyse prédictive IBM SPSS pour combiner les données de production et de qualité dont elle disposait, afin de développer un modèle capable de prévoir la qualité des pièces et des process. Ce modèle a permis à BMW de mieux connaître l’influence des paramètres du processus et de la qualité des pièces. La réussite de sa mise en œuvre a conduit à en généraliser l’application dans les processus de production. D’autres fournisseurs de solutions Big Data offrent des prestations équivalentes. La guerre des données ne fait que commencer!

*Mathématicien, Industriel





 
 
 

AGEFI

Rafraîchir cache: Ctrl+F5 ou Wiki



...